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Introduction 
This report outlines steps in deriving the Bloch Equation, beginning from a simple classical model of a charged 
particle placed in a uniform magnetic field, and applying principles of quantum mechanics to derive, from the 
energy equation of the classical model, the two-component Schrödinger Equation describing the interaction of a 
proton with external magnetic fields. The off-diagonal entries of the Bloch equation matrix are then derived by 
taking the time derivative of the expectation values of the solutions of the Schrödinger Equation (the spinors) that 
describe the tissue protons. Derivations of the Boltzmann distribution which determines the thermal equilibrium 
magnetization, and of the mechanisms of magnetization relaxation, are also described to complete the entries of the 
Bloch Equation. An intuitive understanding of the proton gyromagnetic ratio, and of the physical origin of the 
Nuclear Magneton fundamental constant, is also obtained from the simple classical model. 

Quantum mechanical model of the proton 
This section presents the typical quantum mechanical description of the proton and its interaction with external 
magnetic fields. Here, the basic equations are simply written down and asserted to be accurate representations of the 
proton’s experimental behavior. This section is provided mainly to serve as a reference to the basic equations; it 
should not be regarded as a foundation for the remaining sections of the report. In later sections, this report will 
focus on the application of the principles of quantum mechanics to derive these basic equations from a simple 
classical model of the proton.  

Intrinsic spin and intrinsic angular momentum 
Pauli postulated that nuclei possess an intrinsic angular momentum  and an associated intrinsic magnetic moment J

2π γ=μ J. The relationship between this angular momentum and this magnetic moment is  where μ γ  is the 
gyromagnetic ratio (in units of cycles/unit-time/unit-field, e.g. Hz/Tesla). The intrinsic spin  of a nucleus 
determines the number of distinct energy levels of the nucleus when it is placed in an external magnetic field. The 
intrinsic spin is related to the intrinsic angular momentum by 

I

=J I  where is Planck’s constant. In a magnetic 
field taken to be aligned with the z axis of the laboratory coordinate system, the z component of intrinsic spin for a 
spin ½ particle such as a proton has two possible energy states, spin-up (aligned or parallel) and spin-down (anti-
aligned or anti-parallel). The spin-up state is the low energy state, corresponding to 1 2z =I , and the spin-down 
state is the high energy state, corresponding to 1 2z = −I .  

The Larmor equation 
The proton magnetic moment interacts with the applied external magnetic field and the component of the intrinsic 
spin along the direction of the main magnetic field determines the relative energy. The energy E of a classical 
particle with magnetic moment μ  in an external magnetic field B is given by the equation . The energy 
for a quantum mechanical particle in an external magnetic field along the z direction, 

E = − ⋅μ B

0 ˆB=B z
B

, is found by 
substituting into that energy equation the intrinsic magnetic moment to yield 02 zE π γ= − I . Consequently, the 
energy difference  between the two spin states of the proton is 02E Bπ γΔ = . An electromagnetic field EΔ
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oscillating at temporal frequency ω  is composed of photons with quantized energy E in accordance with the 
Einstein relation E ω= . An electromagnetic field can cause the proton to transition between its low energy and 
high energy spin states, if the photon energy matches the energy required for the transition. The required temporal 
frequency of the electromagnetic field is found by equating the photon energy  with EΔω , and is given by the 
Larmor relation 02 Bω π γ= . 

A simple classical model of the proton 

Description of the model and interpretation of the gyromagnetic ratio 
The classical model described in this section is the foundation and starting point for all of the remaining derivations 
in this report, and ending with the deviation of the Bloch equation. In this classical model, the proton is naively 
represented as a charged point particle with a mass m and charge e  revolving at a constant radius r  around an axis 
with velocity  and momentum . The angular momentum  of this system is = ×L r pm=p v Lv . In this simple 
model,  and r p remain perpendicular, and the formula for angular momentum along the z direction is  
where v is the velocity magnitude and r is the radius. From classical electromagnetism, the magnetic moment along 
the z direction, denoted

L m r v=

μ , is defined by the effective current of the revolving particle multiplied by the cross-
sectional area 2i rμ π=2rπ enclosed by the circular orbit. This magnetic moment is , where i is the effective current 
of the particle. The current is i e T= , where T is the time duration for the particle to traverse one orbit given by 

( ) 22 2ev r r evrμ π π= = 2 2e mπγ =2T r vπ= 2 Lμ πγ=. Thus, , and with  implies .  

Derivation of the Nuclear Magneton 
The theoretical value obtained for the proton gyromagnetic ratio using the formula above does not match the 
experimentally-derived value for the proton gyromagnetic ratio (see below). Perhaps, this result is not surprising 
given the naivety of the classical model. Nevertheless, this model and formula are used to define the Nuclear 
Magneton, a fundamental constant that appears in virtually all tables of “Fundamental Physics Constants”. The 
Nuclear Magneton, denoted Nμ , is the value of the magnetic moment of the proton based on the classical model 
above, using the experimental proton mass m and unit charge e and with intrinsic spin zI  set to 1. Consequently, the 
formula used to calculate the Nuclear Magneton is 2N e m2μ πγ= = Nμ μ. Typically in handbooks, the ratio  is 
given as the experimentally-derived value of the magnetic moment (e.g. 2.793 for proton). Similarly, an 
experimentally derived value of the gyromagnetic ratio can be reported as 2 2e m, and the theoretical value πγ  
may be identified as the gyromagnetic ratio of the Nuclear Magneton equal to 2 Nπγ . Inserting the proton mass and 
charge, and Planck’s constant, yields  and . If the ratio 275.0509 10 Joules/TeslaNμ

−= × 77.622 10 Hz/TeslaNγ = ×
( )N Nγ γ μ μ= INμ μ  is given, then the experimentally-derived value for γ  can be obtained using z .  

Principles of Quantum mechanics  

Particle wave duality: Wavefunctions and their interpretation 
Protons, electrons, and other subatomic particles are often treated as classical particles (i.e., point masses moving 
with well defined position, momentum and energy, and obeying the laws of classical physics. However, these 
particles also exhibit properties characteristic of waves. The wave nature of the subatomic particle is conveyed by 
the de Broglie relation  involving the classical momentum of the particle =p k m=p v , and the wave number k  
(radians/unit distance) of a plane wave. The particle nature is conveyed by the Einstein relation 

( ) ( )22 2E c mc= ⋅ +p p  involving the particle energy E, the particle momentum , and the mass m, and where c is 
the speed of light. Photons, the particles associated with electromagnetic fields, have zero mass. In this case, the 
Einstein relation reduces to  where 

p

p = pE pc= . Since the temporal frequency in radians/s of a wave with 
velocity c and wave number k is k = k where , it follows for particles with zero mass that kcω = E ω= . 
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Plane-wave wavefunctions of “well-defined” energy and momentum 
For freely moving particles (meaning that there is no potential field or force affecting the motion of the particles), 
wave-particle duality is represented by plane waves that have precisely defined, often referred to as “well-defined”, 
energy and momentum. A plane wave is represented by ( ) ( )( ), expt iψ t= ⋅ −r k r ω  where r  represents the spatial 
coordinate and  is the direction of propagation, k ω is the temporal frequency, and t is time. Using the Einstein and 
de Broglie relations, the plane wave representing the particle can be rewritten ( ) (( ), exp it Eψ = ⋅ −r p r )t  yielding a 
wave description of a particle that has well defined energy E and momentum p  as needed for the notion of a 
particle. This plane wave representation is a starting point for discussion of wavefunctions representing particles 
with more complicated quantum mechanical properties.  

Derivation of differential equations for wavefunctions (the wave equations) 
In classical physics, the equations of motion of point particles can be derived from the conservation equations 
involving energy E, momentum p, angular momentum L, and mass m of the particle. For example, the energy 
equation 2E = ⋅p p m  describes a non-relativistic classical point particle with energy E and momentum p  traveling 
in free space without any influence of external forces. Using Hamilton’s principle from classical mechanics, 
differential equations describing the motion of the point particle can be derived from the corresponding classical 
energy equation. In Quantum Mechanics, through a process of substituting scalar variables with corresponding 
differential operators, the classical energy and momentum conservation equations that describe the motion of 
classical point particles are converted into differential equations whose solutions are the wavefunctions describing 
the corresponding quantum mechanical particle with both wave and particle properties. These wavefunctions predict 
the unique behavior of the quantum-mechanical particle that is not predicted by the classical laws of motion. 

The differential operators ,  and  that are used in the substitution have the unique property that when they 
act on plane waves with well-defined energy and momentum, they output the corresponding physical scalar or 
vector quantities E, p and , respectively. For example, the momentum operator  is proportional to the derivative 
with respect to , i.e., 

opp opropE

oppr
( )op i= ∂ ∂p r opψ ψ=p p. Using the expression for the plane wave above it is seen that r . 

Likewise, the energy operator is proportional to the derivative with respect to t, i.e., opE i t= ∂ ∂ . Using the 
expression for the plane wave it is seen that opE Eψ ψ= . With respect to operators that depend on location , no 
derivative operations are necessary, since the plane wave is considered to be function of , so 

r

opψ ψ=r rr . 
Generally, functions that satisfy an operator equation for general operator  of the form opA op Aψ ψ=A  are called 
the eigenfunctions of operator , and for each eigenfunction, the scalar quantity  on the right side is referred to 
as the corresponding eigenvalue for that eigenfunction. The association of these specific differential operators with 
the physical quantities is a result of the so-called Correspondence Principle, which demands that the Quantum 
mechanical description of a physical system is consistent with the correct classical equations of motion in the 
various situations in which is very small relative to other dimensions of the systems. 

opA A

Operator substitution applied to the energy equation of a classical model of the hydrogen atom 
The well-known Schrödinger differential equation for the hydrogen atom is obtained from the energy equation for a 
simple classical model of an electron in the electric field of a charged point nucleus. This fundamental differential 
equation leads to the electron orbital theory used in Chemistry. The energy equation for the particle in a potential 
field is given by 2 2E m e= −p r , which is simply the sum of the kinetic and potential energies of the electron in 
the potential field of the nucleus. Using the differential operator substitutions, the differential equation 

( ) ( ) ( ) ( ) ( )2 2, 2 ,i t t m t eψ ψ∂ ∂ = − ∇ −r r ,tψr r  is found for which the solutions  are wavefunctions 
describing the electrons in the potential field of the nucleus. The solutions to this differential equation are denoted 
by 

( ),tψ r

( ), , ,n l m tψ r ( )nR r and are given by the product of radial functions and spherical harmonic functions ( ), ,l mY θ ϕ . 
( ), , ,n l m tψ r  represent the well known electron orbitals of well-defined energy (i.e., the s,p,d,f, etc. orbitals and 
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indexed by integer n) and of well-defined total angular momentum (indexed by integer l) and of well-defined z 
component of angular momentum (indexed by m). 

Wavefunction interpretation 
A fundamental postulate of quantum mechanics states that the squared modulus of a wavefunction describing a 
particle, given by ( ) 2

,tψ r , is the probability density that the particle will be measured at position  at time t , if 
the appropriate experiment is done to determine the particles position at time t . This postulate is confirmed by 
numerous experiments that reveal the interference patterns of wavefunctions and the associated particle densities 
predicted by those patterns. The probability density interpretation demands that the wavefunction is normalized, in 
the sense that the integral of a probability density function over all possible  locations of the particle must equal 
one. Assuming that possible locations of the particle are restricted to a volume V, the normalization condition reads 

r

r

( ) 2
, 1

V
t dψ =∫ r r . 

Expectation values of wavefunctions 

opAThe so-called expectation value  for a quantum mechanical operator  is given by  opA
( ) ( )† , ,op opv

t tψ ψ= ∫A r A r dr . This expression is equivalent to the weighted average of the variable associated 
with the operator  representing that physical parameter (such as momentum), weighted by the probability 
density function 

opA
( ) 2

,tψ r  for the wavefunction. It is important to understand the meaning of the expectation value 
in the context of performing experiments on a quantum mechanical particle. Suppose that you have prepared a 
quantum mechanical particle such that it is represented by wavefunction ( ),tψ r . It is critical to understand that the 
expectation value is not the value that one expects to obtain in a single measurement of this physical parameter. 
Instead, the expectation value is the average value of the measurements obtain when the experiment is done over and 
over again on a large number of identically prepared particles. If precisely the same experiment is done on these 
different but identically prepared particles, a different value for the physical parameter would be obtained in each 
experiment. Furthermore, a histogram of the obtained values would match the probability density function ( ) 2

,tψ r , 
and the number obtained by averaging the values obtained from all of the experiments would be equal to the 
expectation value. This result is distinctly different from the result that would be obtained from a large number of 
classical particles prepared in the same state. In that case, every particle would give the same value for the physical 
parameter. 

The expectation value formula above is applicable with any normalized wavefunction describing a particle or 
particles in the physical system. In particular, for particles represented by simple plane waves with well-defined 
energy and momentum, it can be seen directly that the formula extracts the value of the momentum from the plane 
wave description. For example, the momentum operator extracts a factor of opp p  from the complex exponential 
into the integrand, yielding the x-independent value  that can be pulled out of the integral. Proper wavefunction 
normalization leads to the result 

p
( )( )( () ( ))1 exp expop V

V d i Et i Et= − ⋅ − ∂ ⋅ − =∫p r p r r p r pi ∂ . 

A wavefunction with a “well-defined” physical parameter describes a physical system in which the same numerical 
value for that physical parameter is obtained whenever a measurement of that parameter is made. Each such 
wavefunction is an eigenfunction of the operator for that physical parameter, and the expectation value of that 
wavefunction will be equal to its corresponding eigenvalue. For example, for the momentum operator above, we see 
that ( ) ( )( )expop opi i Etψ ψ= ∂ ∂ ⋅ − = =p r p r p ψp , meaning that the plane wave represents a wavefunction 
of the physical system with a well-defined momentum. 
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Principles of quantum mechanics applied to the classical model of the proton 

Operator substitution applied to the energy equation for a particle in an external magnetic field 
The energy of interaction between a classical particle possessing a magnetic moment and an external magnetic field 
is equal to . A proton with a magnetic moment has been modeled above as a point particle with mass m 
and charge e revolving around an axis in a magnetic field. In a classical system, the angular momentum (denoted 
here by  rather than  which will be reserved for the angular momentum of the quantum mechanical system) of 
this revolving particle is equal to , where  and 

E = − ⋅μ B

JL
= ×L r p pr  are the position and linear momentum of the particle. 

The magnetic moment is 2 Nπ γ=μ L Nγ, where  is the theoretically-derived gyromagnetic ratio for the model. 
Using the substitutions, the energy equation is converted to a differential equation with solution  given by ( ,tψ r )

( ) ( ) ( ), 2 N opi t tψ πγ ψ∂ ∂ = − ⋅r L B ,tr . The angular momentum operator, denoted , is found by taking the 
cross product of the position operator with the momentum operator given by 

opL

op op op= ×L r p . In forming this 
operator, the order of the operators must be preserved, since the derivatives of  will act on the x, y, and z 
coordinates of the position operator . For example, the z component of  is given by 

opp

op≡r r opL
( ), , ,op z op y op xx y i x y y= − = ∂ ∂ − ∂ ∂L p p x . 

The structure of the differential equation and wavefunction is revealed by choosing the external field  to be 
oriented in the z direction. For this case, the differential equation simplifies to 

B

( ) ( ) (,t t x y y x tψ ω ψ∂ ∂ = − ∂ ∂ − ∂ ∂r 2 N),r Bω = πγ where z  is identified as the Larmor frequency. By 
converting to polar coordinates ( ),r φ siny rcosx r φ= φ for which  and = , it is not difficult to show that the 
differential equation is solved by wavefunctions of the form ( ) ( )( ), 1 2 expm t imψ φ π φ ω= t+ , where m must be 
an integer as is required for the function to be single valued with respect to φ  at multiples of 2π . The index m 
indicates that an infinite number of solutions exist; each solution is identified by a unique integer m. The expectation 
value of the angular momentum along the z axis, ,op zL  for each wavefunction can be found by inserting the 
wavefunction into the general expectation value equation, with the result ,op z m=L . Furthermore, the result 

( ) (, ,op z m mt m t ),ψ φ ψ=L φ  indicates that the wavefunction has well-defined angular momentum given by 
. Similarly, the expectation value of the energy of each wavefunction is opE m ω= −z m=L , and the result 

( ) ( ),op m mE t m , tψ φ ωψ= − E m ω= −φ  indicates that the wavefunction has well-defined energy given by . This 
quantum mechanical model of the proton correctly predicts that the energy separation of quantum states is 

E ωΔ = . Unfortunately, this model incorrectly predicts an infinite number of energy levels (levels indexed by 
integer m) , rather than just two that are observed experimentally. An adjustment of the representation of angular 
momentum to a form that represents intrinsic angular moment will yield a proton wavefunction with exactly two 
energy levels for the magnetic field interaction. 

Conversion of space-dependent to intrinsic angular momentum operators 
The essential mathematical property of angular momentum operators, which uniquely determine the solution to the 
differential equation for the wavefunction obeying the angular momentum operator equation, are represented in what 
is called the operator commutators. The commutator of  and  is denoted by the bracket notation 

 and defined by . Using the definitions of  and , the non-
zero commutators are found to be ,  and . A 
quantum mechanical point particle with quantized angular momentum can be modeled without assuming a spatial 
distribution of charge and current, by introducing the concept of intrinsic angular momentum. The intrinsic angular 
momentum operators will have identical commutation relations to those described above, but no spatial dependence. 
Let  denote the quantum mechanical angular momentum based upon the concept of an intrinsic spin I . A set of 
intrinsic spin operators , and intrinsic angular momentum operators  that obey the commutation relations are 

,op xL ,op yL

, ,,op x op y⎡⎣L L ⎤⎦ , op y op x⎡ ⎤ ≡ −L L L L L L
, , ,,op x op y op zi⎡ ⎤ ≡⎣ ⎦L L L , , ,,op y op z op xi⎡ ⎤ ≡⎣ ⎦L L L ,

opp opr, , , , ,op x op y op x op y⎣ ⎦ ,

, ,,op z op x op yi⎡ ⎤ ≡⎣ ⎦L L L

J

opI opJ
( ), ,x y zσ σ σ≡σ , 2x y ziσ σ σ⎡ ⎤ ≡⎣ ⎦2op =I σ 2op =J σ and , where  are the 2 2×  Pauli Spin matrices that obey , 

, 2y z xiσ σ σ⎡ ⎤ ≡⎣ ⎦  and [ ], 2z x yiσ σ ≡ σ , and  obeys the same commutator equations as . Larger dimension opJ opL
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matrices exist that satisfy these commutation relations, but the 2 2×  Pauli spin matrices will result in wavefunctions 
with exactly two energy levels, as needed to match the results of experiments. 

Wave equation for the spin ½ proton: The two-component Schrödinger equation 
Replacing the angular momentum operator  with the intrinsic angular momentum operator  in the differential 
equation derived from , the differential equation becomes 

opL opJ
( ) ( ) (2 2Ni t t tψ πγ∂ ∂ = − ⋅σ B )ψE = − ⋅μ B , where 

( )tψ  is a two-component column vector defined by ( ) ( ) ( )t t tψ α β
Τ

≡ ⎡ ⎤⎣ ⎦ . The vector  is referred to as a 
spinor because it represents the intrinsic properties of the proton that have resulted from the revolving charged 
particle of the original model. This differential equation is called the two-component Schrödinger Equation. 
Simplifying and expanding the dot product and all vectors and matrices into their separate components yields  

( )tψ

z x y

x y z

i
i

it
α α

πγ
β β

−⎡ ⎤⎡ ⎤ ⎡ ⎤∂
= ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −∂ ⎣ ⎦ ⎣ ⎦⎣ ⎦

B B B
B B B

 

It is important to emphasize that by converting to intrinsic angular momentum, the spatial extent of the proton (e.g. 
radius r) in the original model is lost. However, spatial dependence of the equation and spinor will be introduced 
through the spatial dependence of the external magnetic fields xB zB  and yB . The differential equation describes 
the changes of the proton under the influence of these external magnetic fields and, as detailed below, predicts the 
evolution of any measurement of a physical parameter such as the proton energy, angular momentum, or magnetic 
moment. 

How spinors determine the observed physical properties of the proton 

Expectation values, especially of the proton magnetic moment 
The usual computation of the expectation value requires integration over all possible values of the coordinate that 
the wavefunction was written. For example, in deriving expectation values for wavefunctions ( ). . ,n l m tψ r  for the 
hydrogen electron orbitals, integration over all  would be performed. For the quantum mechanical proton in an 
external magnetic field, the physical state of the particle at time t is described entirely by just the two values of the 
spinor, instead of a continuous function of . Integration over all possible values of the spatial coordinate is 
replaced by a summation over the two “coordinates” of the vector column. Thus, the expectation value for a general 
operator,  acting on the spinor is a summation over the two components of the spinor:  

r

r

opA

( ) ( ) ( )
2

† * * †
11 12 21 22

1
op j op opj

j

a a a aψ ψ α α β β α β ψ ψ
=

= = + + + =∑A A A  

where ( )1 tψ  denotes the first component and ( )2 tψ  denotes the second component of the spinor ( )tψ . The 
operators of most interest for MRI are those corresponding to the magnetic moment μ  in each of the three 
directions, namely: ,op x xπ γ=μ σ ,op y yπ γ=μ σ ,op z zπ γ=μ σ, , and . And inserting each of these in the 
equation above yields ( )† *

, 2 Reop x xπ γ ψ ψ π γ α β⎡ ⎤= = ⎣ ⎦μ σ ( )† *
, 2 Imop y yπ γ ψμ σ ψ π γ α β⎡ ⎤= = ⎣ ⎦, , and 

( ) ( 2 2†
,op z z )π γ ψ ψ π γ α β= =μ σ − . As for the probability density function, the first component of the 

spinor gives the probability of the spin 1/2 particle being in the “first” state is given by 2α , while the probability of 
finding the spin 1/2 particle in the “second” state is given by 2β . The physical meaning of these different states 
will become clear upon further analysis of the spinor dynamics. The probability that the spin 1/2 particle is in one or 
the other state is equal to one, since the particle has to be in one of the available states. This physical requirement is 
written as: 2 2 1α β+ = . 
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Protons with well defined magnetic moment 
A wavefunction with a “well defined” physical parameter means that a physical system described by that 
wavefunction will always yield the same measurement in experiments of that physical parameter. If the system is 
described by a specific two-component spinor with well-defined magnetic moment, then experiments designed to 
measure the magnetic moment with identically prepared particles will give exactly the same value. A two-
component spinor op opψ ψ=μ μ with well-defined magnetic moment will be obey ψ . If the spinor has well-
defined energy it will obey op opE Eψ ψ= . 

In 1921 Stern and Gerlach conducted an experiment using a beam of silver atoms, in which each silver atom was 
deflected upward or downward according to whether the magnetic moment that the atom was positive or negative in 
the direction of a magnetic field spatial gradient. Their experiments showed that the spin 1/2 particles were deflected 
by the magnetic field gradient to two specific spots (revealed by photographic plate), both equidistant from the 
center point which corresponded no deflection (and zero magnetic moment). This experiment showed that the 
magnetic moment of the particles was limited to two values, or quantized.  

Stern-Gerlach-type experiments can also be performed with a beam of spin-1/2 protons. The protons can be prepared 
such that all protons entering the experimental apparatus are in exactly the same quantum mechanical state, i.e., they 
are represented by the same spinor. The method of preparing these protons is not important for this discussion. The 
relative number of protons that have positive magnetic moment (i.e., deflected upward and observed at the higher 
spot on the detector plate) and the relative number that are detected that have negative magnetic moment (i.e., 
deflected downward and observed at the lower spot on the detector plate) can be derived from the spinor. For 
example, assume that the Stern-Gerlach apparatus is set up to detect magnetic moment in the z direction. If protons 
are prepared such that 100% will be deflected towards the upper spot, then they are represented by a spinor of the 
form  (0ie ϕψ

Τ
⎡ ,op z π γ=μ⎤= ⎦ ,op zψ π γ ψ=μ⎣ ϕ real and arbitrary) which obeys  and , 

,op x op y, 0= =μ μ

z

, and each proton will be measured as having positive magnetic moment in the z direction given 
by π γ=μ . Similarly, if protons are prepared such that 100% will be deflected towards the lower spot, then they 
are represented by a spinor of the form 0 ie ϕψ

Τ
⎡ ⎤= ⎣ ⎦ ,op z π γ= −μ,op zψ π γ ψ= −μ which obeys  and , 

, , 0op x op y= =μ μ , and each proton will be measured as having negative magnetic moment in the z direction 
given by z π γ= −μ . As a second example, say that the Stern-Gerlach apparatus is rotated to detect magnetic 
moment in the y direction. If protons are prepared in a quantum mechanical state that results in 100% of the protons 
being deflected to the upper spot, then they are represented by a spinor of the form 1 2 i ie i eϕ ϕψ

Τ
⎡ ⎤⎦= ⎣  (ϕ real 

and arbitrary) which obeys ,op y π γ=μ , , 0op x op z= =μ μ,op yψ π γ ψ=μ  and  and , and each proton will be 
measured as having a positive magnetic moment in the y direction y π γ=μ . Similarly, if protons are prepared so 
that 100% will deflect towards the lower spot, then they are represented by a spinor of the form 

1 2 i ie i eϕ ϕψ
Τ

⎡= −⎣ ,op y π γ= −μ , , 0op x op z= =μ μ⎤⎦ ,op yψ π γ ψ= −μ which obeys  and , , and each 
proton is measured as having a negative magnetic moment in the y direction y π γ= −μ . 

[A general spinor of the form ]ψ α β Τ=  will in general not have well-defined angular momentum in any of the 
orthogonal directions x, y or z. However, for this spinor there is a particular direction for which the protons have 
well-defined magnetic moments. In other words, an orientation of the Stern Gerlach apparatus can be found so that 
100% of the protons will be deflected to the upper spot, or the lower spot of the detection plate. We consider the 
magnetic moment operator ( )ˆ, ˆop n π γ= ⋅μ n σ  for the direction  given by the spherical coordinate angles n̂ ,θ ϕ : 

[ ]ˆ sin cos ,sin sin ,cosθ φ θ φ θ=n ˆ,op ψ π γ ψ=nμ. The equation  defines a spinor having well-defined positive 
magnetic moment along the direction . This equation can be simplified to ( )ˆ ψ ψ⋅ =n σn̂ . Given α  and β , ,θ ϕ  
defining , and n̂ exp cos 2iα φ θ=φ  defining the overall phase, the spinor can be determined implicitly from  and 

( )exp sin 2iβ φ ϕ θ= + . The equation ( )ˆ ψ ψ⋅ = −n σ  defines a spinor having well-defined negative magnetic 
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( )exp sin 2iα φ ϕ θ= − −moment along the direction . This direction can be determined implicitly from n̂  and 
exp cos 2iβ φ θ= . 

Probability of a proton being detected spin-up or spin-down 
To know the probability that a proton will contribute a positive or negative magnetic moment along a direction , 
the general spinor must be decomposed into a sum of spinors representing protons that are spin-up and spin-down 
along direction . This decomposition is 

n̂

[ ] ( )cos 2 exp sin 2 exp sin 2 cos 2a i b iψ θ ϕ θ ϕ θ θ
ΤΤ= + − −⎡ ⎤⎣ ⎦n nn̂ , 

from which it is found for a given spinor [ ]ψ α β Τ= ( )cos 2 exp sin 2a iα θ β ϕ θ= + −n,  and 
( )cos 2 exp sin 2b 2aniβ θ α ϕ θ= − −n . Accordingly, is the probability that the proton will be detected with 

positive magnetic moment (spin-up) in the direction , and 2bnn̂  is the probability that the proton will be detected 
with negative magnetic moment (spin-down) along direction . This formula can also be used to determine the 
probability of detecting the spinor 

n̂
[ ]ψ α β Τ=  as spin-up or spin down in any of the orthogonal directions, using 

 for the z direction, ( )( ) (, 0,θ ϕ = )0 (, 2θ ϕ π= ),0  for the x direction, and ( ) ( ), 2,θ ϕ π π= 2  for the y direction. 

MRI measures the expectation value of the magnetic moment of the protons 
In MRI, the RF coil detects the rapidly changing magnetization vector  of the tissue according to the reciprocity 
formula 

M
( )1

ˆtζ = −∂ ∂ ⋅Μ B  where ζ  is the induced voltage in the coil, and  is the reference field of the RF coil. 
The transverse and longitudinal components of the magnetization vector  are proportional to the corresponding 
expectation values for the magnetic moments: 

1B̂
M

( )0 , ,x y op x op yi n i+ ≡ +M M μ μ 0 ,z opn≡M μ, z , where  is 
the excess number of protons at thermal equilibrium that, if measured, would be measured with positive magnetic 
moment along the direction of the main magnetic field. The RF coil detects the expectation value of the spinor 
representing the quantum mechanical protons in the tissue. Each voxel of tissue will have a collection of protons that 
are in the same quantum mechanical state. i.e., each of the protons in the collection are described by the same spinor 
(to within an overall phase angle). As in the Stern-Gerlach experiments, each proton is detected with either a 
positive or negative unit of magnetic moment. However, unlike the process of the Stern-Gerlach experiment, in 
MRI, the protons within each voxel are not measured one-by-one. At any instant of time, only the entire collection 
of protons is measured as an induced voltage 

0n

ζ  in the RF coil. If, for example, the protons have 50% probability of 
being detected with positive magnetic moment along the axis of sensitivity of the RF coil (determined at each voxel 
by the reference field), and 50% probability of being detected with negative magnetic moment, then no magnetic 
moment is detected, and no voltage is generated in the RF coil. In a large collection of identically-prepared protons, 
the total induced voltage will be proportional to the number of positive magnetic moments measured, minus the 
number of negative magnetic moments measured. The positive contribution to the voltage is equal to the probability 
of the proton being measured with positive magnetic moment, multiplied by the total number of protons measured 
and the unit magnetic moment of the proton. A similar statement is valid for the negative contribution to the voltage. 
Although the magnetic moment of each proton is quantized, the magnetization, which is the result of a summation 
from a large collection of protons, has a continuum of values. Because of the large number of protons contributing 
magnetic moment, the magnetization vector is not observed as being quantized. 

Two examples of solutions of the two-component Schrödinger equation 

Precession 

zB,x yB BThe values of α  and β  can be changed by changing the magnetic fields  (the RF field) and  (the main 
field and field gradients). Precession occurs in the presence of a main magnetic field and no RF field. The 
Schodinger equation simplifies to a diagonal matrix with 0z ≠B 0x y= =B B .  and 
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0
0

z

z

i
it

πγα α
πγβ β

⎡ ⎤⎡ ⎤ ⎡∂
= ⎢ ⎥

⎤
⎢ ⎥ ⎢−∂ ⎥
⎣ ⎦ ⎣⎣ ⎦

B
B ⎦

 

( ) ( ) ( )0 exp zt iThe solution to this differential equation is t ( ) ( ) ( )0 exp zt i tβ β πγ= − B , where α α πγ= B  and
( )0α ( )0β and  are initial conditions. The magnetization derived from the expectation values is as follows: 

( ) ( )2 2
0 0z α β= −M ( ) ( ) ( )2 0 0 exp 2x y zi α β πγ∗+ ≡ −M M Bi t 0 0n πγ≡M and . Note that the overall factor of , 

the thermal equilibrium magnetization that multiplies each component of , is set equal to 1. This simplification is 
done for the convenience of not having to write this factor each time. These magnetization equations reveal that the 
z magnetization is constant and that the transverse magnetization rotates according to the “left-hand rule” at the 
Larmor frequency given by 

M

2 z tπγB . The rotation around the axis of the main magnetic field is referred to as 
precession. The left-hand rule states that when the thumb of the left-hand is aligned along the axis of the applied 
magnetic field, the direction of the curl of the fingers defines the rotation of the magnetization vector.  

Nutation 
In MRI, the main magnetic field is defined to be along the z axis, and RF pulses are applied in the transverse plane 
as additional, rapidly time-varying magnetic fields. The dynamics of the spinor and of the magnetization vector are 
affected by both fields. When an RF pulse is applied, longitudinal magnetization vector is rotated toward the 
transverse plane, a process called nutation. The mathematical representation of nutation is accomplished by 
transforming the Schrödinger equation into a rotating reference frame. A magnetization vector precessing at the 
Larmor frequency in the laboratory frame appears to be stationary in the rotating frame, with fixed angles between 
the vector and the rotating frame x and y axes. After the Schrödinger equation is transformed to the rotating 
reference frame, often the dynamics of spinor is simpler and can be solved. This solution can then be transformed 
back into the laboratory frame. With initial spinor corresponding to protons that are spin-up in the z direction (this 
spinor is the same in both laboratory and rotating frames), the spinor for the laboratory frame under the action of a 
main magnetic field and an RF field (y direction) with amplitude  and temporal frequency 2 z tπγB1B  is given by 
( ) ( ) ( )1cos exp zt B t iα πγ πγ= B t ( ) ( ) ( )1sin exp zt B t iβ πγ πγ= − − B t and , and the magnetization components 

derived from the expectation values are ( ) ( )1sin 2 exp 2x y zi B t i tπγ πγ+ = −M M B ( ) and cos 2z z tπγ=M B . 
These equations describe a magnetization vector that precesses around the z axis as it is being rotated down toward 
the transverse plane from the z axis.  

From the Schrödinger equation to the Bloch equation 

Origin of the off-diagonal terms describing magnetization vector rotations 
The Bloch Equation without relaxation and recovery terms is a differential equation for the evolution of the 
expectation values of the single proton magnetic moment. It is determined by taking the time derivative of the 
expectation value equations. For example, with ( ) († †

x x xt tψ ψ ψ ψ†
x xψ ψ=M σ )t∂ ∂ = ∂ ∂ + ∂ ∂M σ σ, , with 

similar equations for  and zM xσyM . Using the Schrödinger equation and the commutation relations between , , 
and 

yσ

zσ zM to simplify and apply to all combinations of , and repeating the process for  andyMB , the individual 
equations of the Bloch equation without relaxation and recovery terms can be written 
as 2 2x z y y zt πγ πγ∂ ∂ = −M B M B M , 2 2y x z zt xπγ πγ∂ ∂  and= −M B M B M 2 2y x x yt∂ πγ πγz ∂ = −M B M B M . In 
standard 3  matrix form, these are  3×

0
2 0

0

x z y

y z x

z y x

t
πγ

⎡ ⎤−⎡ ⎤ ⎡
∂ ⎢ ⎥⎢ ⎥ ⎢= −⎢ ⎥⎢ ⎥ ⎢∂ ⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦ ⎣⎣ ⎦

M B B
M B B
M B B

x

y

z

⎤
⎥
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In this form, the Bloch equation is a differential equation for rotations in three-dimensional space. The 
magnetization vector represents the expectation value of the magnetic moment and is rotated by the action of the 
external magnetic fields according to the “left-hand rule”.  

Origins of decay, recovery and thermal equilibrium magnetization terms 

Theory of exchange between spin system and reservoir (the tissue lattice) 
When a spin transitions from the high energy state to the low energy state, a reservoir in thermal contact (capable of 
exchanging energy) with the spin system must possess a quantum mechanical state that can transition to a higher 
energy state. This transition rate (i.e., transitions per second) per spin is denoted b b aW N W − →+↓ = . where  
denotes the number of states in the reservoir that can accept a quanta of energy, and 

bN

b aW − →+  is the transition rate per 
spin per reservoir state. Similarly, for the opposite transfer of energy, the availability of a quantum mechanical state 
in the reservoir to transition to a lower energy state is necessary. This transition rate per spin is denoted 

, where  denotes the number of states in the reservoir that can release a quanta of energy, and 
 is the transition rate per spin per reservoir state. An essential postulate of statistical mechanics, applied at 

the deepest point of this model (deepest meaning that the defined particles and states of the system at that level are 
not further dissected) is the postulate of microscopic reversibility. For this model, this postulate is expressed as 

. Under these conditions, a spin system initially with equal numbers of spins in the low and high 
energy state will develop a net excess of spins in the lower energy state, according to the differential equation 

aNa a bW N W + →−↑ =

a bW + →−

b a a bW W− →+ + →−=

( ) ( )dn dt W N n W N n↓ ↑= − − + N N N+ −= − N −, where  is the total number of spins in the volume,  and N +  
are the number in the low and high energy state, respectively, and n N N+ −= −  is the excess of spins in the low 
energy state. The form of this differential equation which defines the longitudinal relaxation time  and thermal 
equilibrium magnetization  is 

1T
( ) ( )( )0 /n N W W W W↓ ↑ ↓ ↑= − +( )0dn dt n n T= −0n 1 , where  and 

( )1 1T W W↓ ↑= + ( )0 0n =. For example, taking , the solution of this differential equation is 
( ) ( )( )0 1 expn t n t T= − − z nπ γ=M1 . Recalling that , the excess number of spin-up protons times the magnetic 

moment of a single proton, we see that the solution describes  recovery of longitudinal magnetization towards the 
thermal equilibrium magnetization given by 

1T

0 0nπ γ=M . 

Derivation of the Boltzmann equation 
While the model above predicts the possibility of an excess of spin-up protons if there is a mechanism for energy 
exchange between the spin system and the lattice, the model does not determine actual numerical values for this 
excess. Deriving numerical values requires the concept that the observed partition of energy between two physical 
systems in thermal contact with other corresponds to the partition that yields the greatest number of assessable 
states. Any particular quantum mechanical configuration of the spin system and lattice state has equal chance of 
being the observed state of the physical system. A “configuration” of the spin system is defined as the collection of 
spins that are spin-up and those that are spin-down, with all spins uniquely identified. A configuration of the lattice 
is defined as the collection of quantum mechanical states of the tissue lattice, e.g., collectively all quantum-
mechanical vibrational, translational and rotational states of the tissue macromolecules and small molecules, with 
each state uniquely identified. Each spin system configuration and lattice configuration with the correct total energy 
has an equal chance of being the observed state of the physical system. The physical system moves very rapidly 
through all different spin system and lattice configurations which are consistent with the total energy of the 
combined system. The observed energy partition is simply the one associated with the greatest number of available 
spin system configurations and lattice configurations. 

( ),s s sg N E sN sEDefine  as the number of states available in the spin system composed of  protons and energy . 
Similarly, define ( ),r r rg N E  as the number of states available only in the reservoir (tissue lattice) composed of 

 particles and energy . For any particular distribution of the total energy, the total number of available states 
available, denoted 

rN rE
( ) ( ) ( ), , , , ,s r s r s s s r r rg N N E E g N E g N E= , is the product of the number of states available 
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in the spin system times the number available in the reservoir. Thermal equilibrium is defined by the condition that 
( , , , )s r s rg N N E E  is maximized by exchanging energy (particles are not exchanged), or equivalently, when 

( ) ( ) ( ) ( )s s s s s r r s r rg E g E E g E E g E+ Δ = −Δ0sg E∂ ∂ = , with . The zero derivative condition can be written 

02sE πγΔ = Β sN. and  are not listed as arguments because they are not exchanged. Using combinatorics to 
count the spin states yields 

rN
( ) ( ) 0 0

s s s s sg E g E E N N− ++ Δ = 0N −
0N +, where  and  are the number of spin-down 

(high energy) and spin-up (low energy) protons, respectively, at thermal equilibrium. Using a collection of non-
interacting particles carrying kinetic energy as a model of the lattice yields ( ) ( ) ( )expr r s r r sg E E g E E kT−Δ = −Δ . 
Combining using the zero derivative condition yields the Boltzmann equation ( )0 0 exp sN N E kT− + = −Δ . 

Decay and recovery terms 
( ),x yM MThe term  models the decay of transverse magnetization 2T , and the term  models the decay of 

longitudinal magnetization 
1T

zM , as well as recovery of longitudinal magnetization towards the thermal equilibrium 
magnetization caused by energy exchange with the tissue lattice. These terms can be derived from models of 
physical effects that destroy the condition that all protons within a voxel are in the same quantum mechanical state, 
i.e., are represented by the same spinor. The gradual loss of similarity of spinors representing the protons is referred 
to as a loss of coherency of the quantum mechanical system. The loss of coherency of the system is an inevitable 
process caused by differences of the local microscopic magnetic field environment of the different protons in the 
tissue.  and  can be calculated for different tissues using a statistical model of these time-varying microscopic 
magnetic fields affecting individual protons. Using first and second order statistics, the correlation time, power 
spectrum, and variance of the random time-varying magnetic fields can be calculated. Using this model, loss of 
longitudinal magnetization is given by 

1T 2T

( ) ( ) ( ) ( )( )( )2 21
20 exp

x yz zt t tφ φσ σ= − +M M ( ) ( )2
y

tφσ
2 tφσ x

 and , where  are 
time-dependent variances of the angular spread of the expectation values induced by action of random microscopic 
magnetic fields in the x and y direction, repectively. The loss of transverse magnetization is given by 

( ) ( ) ( ) ( )( )( )2 21
20 exp

z yx xt t tφ φσ σ= − +M M  and ( ) ( )0y yt =M M ( ) ( )( )( )2 21
2exp

z x
t tφ φσ σ− + ( )2

z
tφσ, where  is the 

variance of the angular spread of the transverse expectation values induced by action of random magnetic fields in 
the z direction. Based on the Schrödinger equation, the spread of expectation values in the presence of random 
magnetic fields with zero mean and variances 2 2

x

2
y

2
z

σBσ σ σ≡ =
⊥B B B  and , and correlation times of 0τ , is given by 

( ) ( )22 2 2 2 2
0 02 2 1

x y
tφ φσ σ πγ σ τ ω

⊥
= = +B τ ( )22 2

02 2 tφ and 
z z

πγ σ τ= B . Simple identification of σ 11 T 21 T and  in the 
exponents of the magnetization equations yields the following widely accepted equations for 11 T 21 T and : 

( ) ( )2 2 2
1 0

21 2 2 1T 0πγ σ τ ω τ
⊥

= +B  and ( ) ( )( )2 2 2 2 2
2 0 0 01

z
T1 2πγ σ τ σ τ ω τ

⊥
= + +B B . 

The Bloch Equation 
By combining contributions to the time derivatives of the magnetic moment expectation values from (1) the two-
component Schrödinger equation describing the dynamics of a single proton, (2) the recovery of longitudinal 
magnetization based on energy exchange between the spin system with the lattice and (3) the decay of magnetization 
due to the action of microscopic random magnetic fields, the complete Bloch Equation is obtained: 

2

2

1 0

1 2 2 0
2 1 2 0

2 2 1

x z y x

y z x y

z y x z

T
T

t
T T

πγ πγ
πγ πγ
πγ πγ

⎡ ⎤− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

M B B M
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